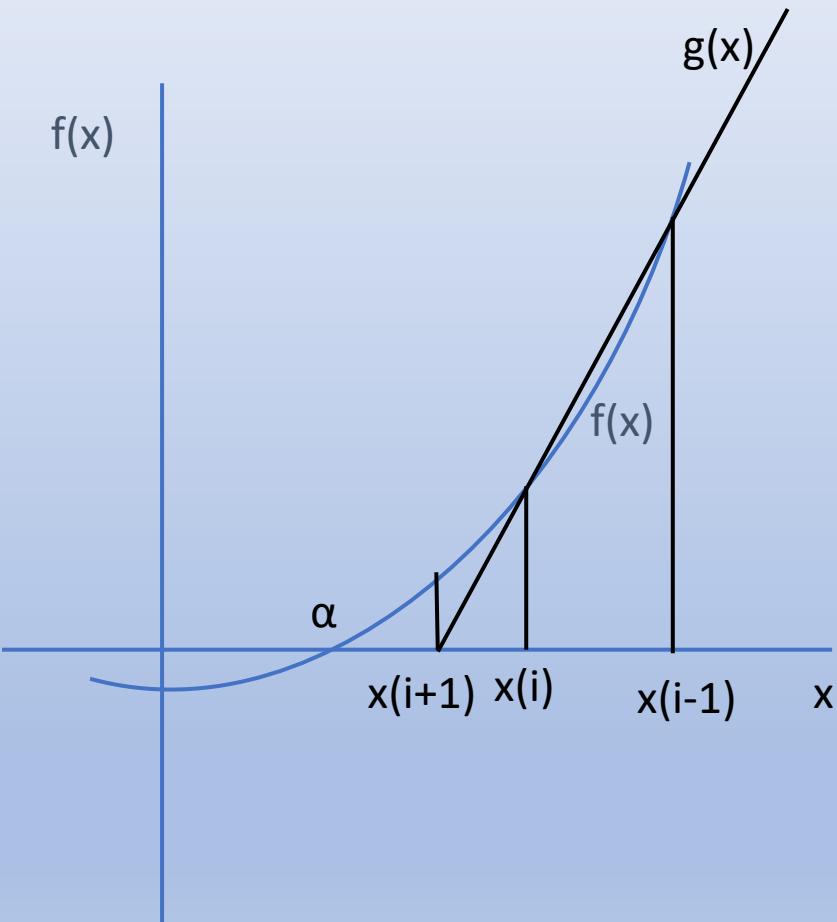


Numerical Method Topic - Secant Method

Objectives


- Solve a nonlinear equation using Secant Method
- Although Newton's method is a popular method, the method requires the derivative of the function $f(x)$ to be evaluated.
- When the derivative is not easy to evaluate, Secant method can be used.
- Secant method belongs to a group called open domain methods.
- The nonlinear equation, $f(x) = 0$, could be an algebraic equation, a transcendental equation etc

- Examples of nonlinear equations:

- $f(x) = x^3 - 2*x^2 - 2*x + 1;$

- $f(x) = \exp(x) - 2*x - 2;$

Secant Method - Algorithm

- $g'(x(i)) = \text{slope of } f(x) = \frac{f(x(i)) - f(x(i-1))}{x(i) - x(i-1)}$
- $\frac{f(x(i+1)) - f(x(i))}{x(i+1) - x(i)} = g'(x(i))$
- $f(x(i+1)) = 0$
- $x(i+1) = x(i) - \frac{f(x(i))}{g'(x(i))}$
- Iteration stopping criteria
 - $|x(i+1) - x(i)| \leq \varepsilon_1$
 - $|f(x(i+1))| \leq \varepsilon_2$

Secant Method - Algorithm

- Examples:

- $f(x) = x^3 - 2*x^2 - 2*x + 1; \quad f(x) = \exp(x) - 2*x - 2;$

- $g'(x(i)) = \frac{f(x(i)) - f(x(i-1))}{x(i) - x(i-1)}$

- $x(i+1) = x(i) - \frac{f(x(i))}{g'(x(i))}$

Summary

In this video,

- We presented Secant method to solve non-linear equations.
- Secant method belongs to a group called open domain methods.
- Secant method does not require the derivative of the function $f(x)$ to be evaluated.
- Secant method requires two initial points to start the iteration process.